A Method for Evaluating the Quality of 3D-Printing Metal Parts
The U.S. and its allies plan to impose sanctions on more Russian industries and supply chains.
The US government representatives recently visited Europe to consult with allies on strengthening and enforcing sanctions to punish Russia. They also plan to take action to disrupt their critical supply chains.
The US government claims that the sanctions imposed on Russia since the invasion began on February 24 have proved extremely effective, plunging Russia into a financial crisis. The sanctions include a freeze on the Russian central bank's foreign exchange assets, a ban on hard currency transactions by major Russian banks and wealthy individuals, and export restrictions on advanced semiconductors and other technologies. The sanctions have weakened the Russian economy and left the Kremlin with fewer resources.
The volatile international political situations will continue to affect the markets and prices of many commodities like the 3D printing metal powder.
Researchers at NTU Singapore have developed a fast and low-cost imaging method for assessing the quality of 3D-printed metal parts. This method can analyze the structure and material quality of 3D-printed metal parts.
Most 3D-printed metal alloys consist of numerous microscopic crystals that vary in shape, size, and orientation of the atomic lattice. By mapping this information, scientists and engineers can infer the alloy's properties, such as strength and toughness. It's like looking at wood grain. When wood grain is continuous in the same direction, strength and toughness are strongest.
The new technology could benefit the aerospace sector - enabling low-cost rapid assessment of turbines, fan blades, and other critical components, which is of great significance to the maintenance and overhaul industry.
Until now, however, analyzing the "microstructure" in 3D-printed metal alloys has been a time-consuming and laborious process, usually achieved using measurements made with scanning electron microscopes, which cost between S $100,000 and S $2 million.
But the new alloy imaging method developed by Assistant Professor Matteo Seita and his team at NTU provides quality analysis in just a few minutes. They used a system of optical cameras, flashlights, and laptops that ran proprietary machine learning software developed by the team at a total cost of about $25,000.
The method involves treating the metal surface with chemicals to reveal its microstructure, then holding the sample facing the camera and using a flashlight to illuminate the metal in different directions to take multiple optical images. The software then analyzes the patterns produced by the light reflected off the surfaces of different metal crystals and deduces their orientation. The whole process takes about 15 minutes. The team's findings have been published in NPJ Computational Materials.
"By using our low-cost and fast imaging method, we can easily tell the difference between good 3D-printed metal parts and defective parts. Currently, it is impossible to tell the difference unless we evaluate the microstructure of the materials in detail, "explained Seita, an assistant professor at NTU's School of Mechanical and Aerospace Engineering and School of Materials Science and Engineering.
"Even though two 3D-printed metal parts may be produced using the same technology and have the same geometry, they are never the same. In theory, this is similar to how two originally identical wooden objects could have different texture structures."
New imaging methods improve 3D printing certification and quality assessment. Assistant Professor Seita believes their innovative imaging method could simplify the certification and quality assessment of metal alloy parts produced by 3D printing, also known as additive manufacturing.
One of the most common techniques for 3D printing metal parts is to use high-powered lasers to melt metal powders and fuse them layer by layer until a complete product is printed.
However, the microstructure, and thus the quality of the printed metal, depends on many factors, including the speed or strength of the laser, how long the metal cools before the next layer is melted, and even the type and brand of metal powder used. This is why the same design printed by two different machines or production plants may result in parts of different quality.
Instead of using a complex computer program to measure crystal orientation in the light signals collected, the "smart software" developed by Assistant Professor Seita and his team uses a neural network to simulate how the human brain forms associations and processes thoughts. The team then used machine learning to program the software to feed it hundreds of optical images.
Their software eventually learned how to predict the orientation of crystals in metal from an image, depending on how light scatters from the metal's surface. A complete "crystal orientation diagram" is then created, which provides comprehensive information about crystal shape, size, and atomic lattice orientation.
3D printing metal powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing metal powder price, you can send us your inquiry for a quote. ([email protected])
3D printing metal powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing metal powder, please feel free to contact us and send an inquiry. ([email protected])
Greece will hand over Iranian oil it intercepted from a Russian-flagged tanker to the United States at the request of the U.S. Justice Department, Greek port police said recently, AFP reported. The decision angered Tehran.
In April, Greek authorities reportedly seized a Russian oil tanker, the Pegas, which was said to be heading to the Turkish port of Marmara.
Reports say the ship was docked in Calistos Bay with a crew of several people said to be Russian. The Greek coast guard said the ship had been renamed the Lana.
The report notes that the European Union imposed sanctions on Russia after the conflict broke out in February. Greek authorities seized the tanker in accordance with European Union sanctions.
According to information at the time, the tanker was carrying 115,000 tons of Iranian oil.
Iran's Ports and Maritime Organization strongly protested Greece's decision, calling it an "international bandit." "The Islamic Republic of Iran will not give up its legitimate rights and expects the Greek government to abide by its international obligations in the area of navigation and shipping," it said in a statement on its website.
Iran's Foreign Ministry, through the International Maritime Organization, called on the Greek government to release the tanker and its crew overnight, adding that "the Americans discharged their cargo," the report said.
Athens did not immediately respond to the Iranian protest and gave no further details about the oil on board or how it was handed over to the United States, the report said.
The 3D printing metal powder price is expected to increase in the next few days affected by the change in supply and demand markets.
Inquiry us